Traumatic Brain Injury in Modern War Pre Hospital Resuscitation Implications

Geoffrey Ling, M.D., Ph.D.

Colonel (retired), Medical Corps, US Army
Professor of Neurology and Attending in Neuro Critical Care
Johns Hopkins

Disclosures

Co-Founder

On Demand Pharmaceuticals, Inc.

Host Response, Inc.

SunQ, LLC

Board Member

Facebook B8

KnoLimits, LLC

Caivis Fund

Camden Partners Fund

BioElectron Pharma

DNARx, Inc.

National Football League Health Fdn

NFL Players Association Health Cmt

NIH-NCATS Advisory Council

THOR

- Save life firstthen worry about the brain
- ABCs are also the first steps in TBI management
- Learning from the resuscitation community

Brain Physiology

- 25% of total body oxygen consumption
- 94% devoted to gray matter
 - % changes depending on regional brain activity
 - 12mM ATP/min for normal function
- Brain produce 12mM ATP/min but reserves: 8mM
- Glucose (brain) in anaerobic state: 15mM ATP
- Autoregulation of CBF between MAP 50-150mmHg
 - 50cc/100gm tissue but regional differences are key
- If only hypoxic, adequate CPP with glucose and normal pCO2 can still maintain normal ATP levels
 - ?? Protection via in reduced CMRO2??
- Ischemia leads rapidly to neuron death
 http://www.humanneurophysiology.com/cbfo2consumption.htm

CPP - CBF Relationship

Hayek and Veremakis, in Critical Care, Lippincott, 1992

Cerebral Perfusion Pressure TBI Resuscitation Important Principal

CPP=MAP-ICP

- Prospective studies have shown 50% increase in survival
- 50% increase in "good" outcome
- No increase in ICP or adverse clinical outcomes by actively maintaining CPP
- Impractical prehospital as need ICP

Marion et al, J Neurosurg **75**:354-362 (1993) Marshall et al, J Neurosurg **73**:S28-S36 (1991)

It all starts with a whack, bang or boom

Google images

Blast Wave

Courtesy of Steve Parks, ORA, Inc.

PREVENT Studies: injury severity vs. overpressure

Explosive Blasts TBI Not Seen on Regular MRI or CT

- 7T MRSI reveals hippocampal injury in patients which correlates with memory impairments determined by cognitive testing.
 - Anterior hippocampus significantly injured on both sides evidence by decreased NAA/Ch ratio (> 2 SD) compared to controls.

Ref: Hetherington H, Hamid H, Kulas J, Ling G, Bandak F, de Lanerolle N, Pan J . MRSI of the medial temporal lobe at 7T in explosive blast mTBI. Magn Reson Med (2013)

Data from a veteran with explosive blast mTBI. (a) locations of the single voxel reconstructions (yellow circles) numbered 1 to 6 from posterior to anterior; (b) spectra from these loci from a veteran with explosive blast mTBI; (c) spectrum from the most anterior location of the eight hippocampal formation

The DARPA Blast Gauge System

•A wristwatch-sized device that measures pressure and acceleration changes caused by explosive blast

- Attached at the neck, shoulder and the base of the skull
- Rate of false alarm <1%
- Wiith > 7100 active combat soldiers

Dr. Jeff Rogers, MTO

Accurate Measurement of overpressure waveforms, pressure impulse, and acceleration.

Blast Gauge, RIT 2011

Weight < 1 ounce

Tracking Cumulative Exposure for correlation to acute injury and long term deficits via integrated data base

The Blast Gauge System, © 2013 BlackBox Biometrics, Inc.

Blast

Gauge

Micro-USB

Port

Sensor

Dome

Indicator

Lights

Impact-

Resistant

Casing

UNDERSTANDING BLAST ENVIRONMENT

SENSOR MEASUREMENTS ALLOW:

operationally relevant recreations of blast events, individual Exposures HISTORIES,
Better operating procedures and improved equipment.

RETURN TO MENU

Afghanistan 2003

Iraq 2005

Is TBI New disease?

Or an old one that is now gained importance?

TBI and Iraq and Afghanistan Wars

Total: 266,810 (2001-2012)

> 80% is mild TBI

Source: DVBIC and AFHSC

TBI

Lessons from Civilians

State of Civilian TBI Management at the beginning

- Greatest advances are for moderate-severe TBI due to the Clinical Practice Guidelines developed by AANS and CNS
- Mild TBI/Concussion care is inconsistent
 - Only 10-15% of mild TBI victims seen by MD
 - Most are seen by lay person (coach, parent, etc)
 - Epidemiology is incomplete
- No standard approach to mild TBI treatment
- No effective neuro rescue medications in clinical practice

TBI Management Learning from the war

Evolving continuously

TBI "Good News"

Military Medical Care is "Leading the Way"

- Creation of the first large system-wide approach to concussion
- Concussion diagnostic tool being used widely by first providers
 - MACE (military acute concussion evaluation)
- Clinical practice guidelines (CPG) for TBI care
 - DoD-VA CPG mTBI/Concussion
 - Guidelines for the Field Management of Combat Related Head Injury
 - Use of civilian CPGs for moderate to severe TBI
 - Additional advances made through war experience
- Clinical guidelines for return to duty
 - "3 strikes and you are out"
 - DTM 09-033: mandatory screening
- Neuro Teams (neurosurgeon and neurointensivist)
- Neurosurgical advances in hemicraniectomy, endovascular techniques and neuro critical care

"There is always room for improvement"

Mild TBI

- Pt suffered blast TBI from about 8 feet
- Wearing helmet/body armor/googles
- No LOC but confusion/amnesia for at least 15min (Grade 2 concussion)
- CT: normal
- Alert and Oriented X 4
- Persistent neuro cognitive deficits
 - Frontal lobe based tasks (digit span, word list generation)
 - Normal by Day 7, returned to duty

Second Impact Syndrome (SIS) Avoiding Second Impact Syndrome

- Patients who sustain initial mild TBI (usually a concussion) sustains a <u>second head</u> injury before having fully recovered
- Leads to
 - loss of cerebral autoregulation
 - diffuse cerebral swelling
 - uncontrolled elevated ICP (even without intracranial hematoma)
 - death
- Rare
- Mortality rate ~50%

Not being satisfied with "good enough"

Learn from providers who are making it happen

Get leaders the evidence that change is needed

Gray Team missions (I-IV) sent by ADM Mullens, CJCS

Paradigm Shift Take medicine "to" patient

- Empower first providers (medics) with new clinical tool to identify TBI
- Order: every "at risk" solider must be screened by medic
- At Risk: within 50m of blast or in vehicle in front of or behind damaged vehicle
- If soldier has TBI and was not seen by medic, the blame is on the leaders (officer and sergeant)

 DTM 09-033

MACE and SAC

Military Acute Concussion Evaluation Standardized Assessment of Concussion

- Embedded in the MACE is the Standardized Assessment of Concussion (SAC), a widely used, validated, brief cognitive tool.
- Gross cognitive tool addressing 4 domains
 - Orientation
 - Immediate memory
 - Concentration
 - Memory recall
 - Max score is 30
 - <u><</u> 25 is significant

Clinical Management of mTBI

First large system-wide CPG

- VA/DoD Clinical Practice Guidelines for Management of Concussion/mTBI
 - Evidence based
 - Released in March, 2009
- Focused on <u>symptoms treatment</u>

Cifu, Labutta and Ling (eds), "VA/DoD Clinical Practice Guidelines for Management of Concussion/mTBI" (2009)

Download free at:

Initial Preliminary Results

- Return To Duty: 97.36%
- 90% of Blast pts are symptom free by 3 days
- No cases to date of prolonged post-concussive syndrome

Moderate to Severe TBI

No head injury is too severe to despair of, nor too trivial to ignore

- Hippocrates

Moderate TBI

- Pt exposed to mortar explosion and struck by frag
- GCS 12 at scene, brought to CSH
- CT: frag track w/ hematoma, no SAH

Moderate Injury to Brain Outcome

- Bifrontal craniotomy with debridement
- ICP monitor placed, treated with HTS
- TCDs increased flow velocities so patient was treated with HHH
 - Peaks at HD#7 and
 - Normal by HD#11
- Discharge to home
 - But stayed in theater

Severe TBI

Pt suffered TBI from hanging IED

CT: Early edema, L brain herniation, L SDH,
 SAH, L temp fx, L orbital roof fx

Severe Blast TBI Outcome

- No evid of hemorrhagic shock
- Initial Left hemi-craniectomy with SDH evac
- Partial frontal lobectomy (of herniated portion)
- ICP control with HTS
- CPP directed therapy
- Seizures but controlled
- Autonomic dysfunction syndrome controlled with propanolol and morphine
- Vasospasm successfully tx with HHH
- Followed commands by Day #7
- Followed multi-step commands by Day #12 and extubated
- Transferred to civilian hospital on Day #14

Blast TBI and Shock

- IED blast, GCS 12 then 6
- Airway, Tourniquet in field
- A/E to CSH but cardiac arrest during landing
- EMD, Pulseless, Pupils 3 NR,
- Hb 6, pH 6.9, INR 6, T 93°F
- Lots of warm RBC/plasma (1:1), platelets, cryo,fVIIa, NS
- Hemicraniectomy, amputation, ICU care
- Today, recovered, prosthetic leg

In Triage Area

- Neuro Critical Care assigned primary care
- Regained pulse with 2U PRBC, 2L NS
- Central lines placed and resuscitation advanced
- BP 60/30, additional 7U PRBC (warmed with Belmont), 7U FFP, 6-pk Plt, 6 cyro, 6L NS
- Factor VIIa administered
- Peak airway pressures over 50
 - reintubated
 - high rate low volume mode instituted
- Within 2 hours, T 97.2°F, INR 1.9, pH 7.2, INR 1.1, HCT 30, Plt 95, PAP 20's
- Pupils: sluggish but reactive bilaterally

In OR

- Right fronto-parietal-temporal craniectomy with evac of SDH, debrided ODSF
- IVC placed with ICP 7

Post-OP

- A/E to Germany. There, pupils reactive, moved RUE purposefully, L to pain, ICP 12, CPP 70s
- Transferred to WRAMC, awoke to oriented X 3, in rehab due to R BKA as left HP resolved
- Recovered, prosthetic leg

Battlefield Treatment

Knuth, Letarte, Ling, Moores et al Brain Trauma Foundation (2005)

Download available: www.braintrauma.org

Pre-Hospital Guidelines for Management of TBI

- Avoid hypoxia
 - O_2 Sats > 90 or pO_2 > 60mmHg
- Artificial airway for GCS < 8
- Hyperventilation for cerebral herniation
 - Not for ICP prophylaxis or routine use
- Systolic BP > 100mmHg
- No specific resuscitation fluid is recommended
 - Hypertonic saline has logistical advantages
- Hypertonic saline at < 500cc boluses is acceptable
 - Use for ICP management is an option
- +/- Mannitol for cerebral herniation if intravascular volume can be maintained

Pre-Hospital Guidelines for TBI

- Determine GCS and pupil function as soon as possible
- Triage GCS 9 13 to CSH
- GCS < 15 should not return to duty until normalized
- Sedation and analgesia as needed for transport
- Analgesics in small doses with proper monitoring
- Antibiotics for penetrating TBI is an option

Early Prognostic Signs Trauma

Design: Retrospective study of adults and children

Pts: 846 (668M:178F), MVA 50%, motorcycle 22%, falls 15%

Outcome: 1 year GOS

Results: GCS 8 (40% good recovery) to 3 (7%), death 8 (12% death) to 3 (73%), Pupils: Bilat abn (62% death, 5% PVS) vs normal (16% death, 0 PVS, 53% good).

Conclude: Outcome assoc with GCS, pupils, body temp, age

Clinical Management of Moderate – Severe TBI

"Guidelines for the management of severe traumatic brain injury"
Carney et al, Neurosurgery 80:6-15 (2017)
Download available: www.braintrauma.org

"Explosive Blast Neurotrauma"

Ling, Bandak, Armonda, Grant and Ecklund Journal of Neurotrauma 26:815–825 (2009)

> "Traumatic Brain Injury in Modern War" Ling and Ecklund Curr Opin Anesth 24: 124-130 (2011)

Key Guidelines

- CPP goal: 60 70mmHg
- SBP > 100mmHg (50-69yo) & >110 mmHg (15-49 or > 70yo)
- ICP < 22 mmHg
- Antiepileptic drug for 7 days (begin w/in 24 hours)
- No hypothermia
- No steroids
- pCO2 35mmHg if hyperventilating for herniation, 24Hrs only

In 3rd Ed CPG

- pO2 > 60mmHg or O2 sats > 90%
- Hypertonic resuscitation fluids (NS or higher)
- Artificial airway for GCS <8
- Head of Bed at 30°
 Guidelines for the management of severe TBI, 4th Ed, Brain Trauma Foundation, 2016

Additional Interventions

- Brain Code
 - HOB 30°, Hypervent pCO₂ 35, +/- mannitol
- Hypertonic Saline (HTS) for ICP control
 - 23.4% HTS bullet, 3% HTS infusion
- Hemicraniectomy (early)
- Transcranial Doppler (TCD) for blast related vasospasm detection
- Endovascular techniques for vasospasm intervention

Hypertonic Saline "Bullet"

- Emergency treatment for herniation
- Saline bullet = 30cc bolus of 23.4% saline
 - Can be repeated
- Up to 50% reduction of ICP
 - 65% of pts below 20mmHg ICP
- Preserves intravascular volume state
 - Increase osmolality without diuresis
- Effect lasts for hours
- Potential toxicity
 - ATN

Hypertonic Saline Infusion

- Maintain blood:brain osmotic gradient
- Initiate therapy with 3% saline at 75 cc/hr (or higher if requiring fluid resuscitation)
 - use 50% chloride/50% acetate to minimize risk of hyperchloremia
 - Central venous access to avoid phlebitis
- Infuse to a goal Na (ex. 145-150)
- Check serum Na frequently (q 4-6 hrs)
 - "ballpark" serum osm will be double serum Na
- After "edema window," simply turn off infusion to autotaper

Emerging Evidence for Improving TBI goals of Resuscitation

TBI and Optimal Hb

Study: RCT of EPO with restrictive Hb <7 vs liberal Hb <10 goals, CHI TBI, n=200 pts

Methods: EPO vs placebo, transfusion if Hb < 7 (restrictive) or Hb < 10 (liberal)

Results: Restrictive Hb threshold had more favorable outcome (42.5%) than liberal (33%) and less thromboembolic events, 8.1% vs 21.8%

Conclusions: Restrictive Hb trigger level (< 7) had greater benefit. EPO or liberal Hb goal did not improved outcome.

Robertson et al, JAMA 312: 36-47 (2014)

TBI and Optimal Systolic BP

Study: Retrospective analysis of 3844 pts from Excellence in Pre-Hospital TBI study

Methods: SBP and TBI outcome

Results: SBP 40-119 mmHg associated with worse outcome, Compared to 40mmHg, every 10mmHg higher assoc with lower mortality (18.8%)

<u>Conclusions:</u> Higher SBP associated with better outcome. Challenges SBP> 90 goal as standard of care.

Spaite et al, JAMA Surg 152:360 (2017)

TBI and Optimal Resuscitation Fluid

Unknown

- NS assoc less mortality than albumin (humans)
- FFP decreases lesion size and edema (pigs)
- Hextend decreases edema (pigs)
- Vasopressors increase risk of ARDS (humans)
 - Epi by 5.8X, Dopamine by 10.8X

Contant et al, J Neurosurg 95:560 (2001) Finfer et al, SAFE, NEJM 3:2247 (2004) Myburgh et al, NEJM 357:874 (2007) Jin et al, Shock 38: 49 (2012)

Research to Improve Diagnosis and Treatment

What is on the horizon?

Portable Brain Imaging (better than MRI)

Quantum Orbital Resonance Spectroscopy

Today 100 Quantum Orbital Resort

Problem:Current Magnetic Resonance
Spectroscopy is hampered by:

What is needed:

A new non-invasive method for directly hyperpolarizing tissues that does not require a large magnet.

- High polarization (>10%)
- Fast (sec to min)
- Compact, inexpensive system
- Other atomic spectra (e.g., ¹³C)

- Low polarization (~0.001%)
- · Slow (30 min)
- Large, expensive magnets
- Restricted to ¹H spectra

Dr. Matt Goodman, DSO, DARPA

It's hard to beat thermodynamics....so change the game. Use different physics!

Initial Results: Hyperpolarization using visible light

Team achieved 1% polarization

Initial measurements indicated 100-1000x more polarization using this method.

Dr. Matt Goodman, DSO, DARPA

Today's Soldier

- Pt thrown from vehicle by IED blast
- CT: Spine fractures at T4 and T5

- Plan to A/E back home
- Cried when told he would be sent out of theater.
- "Back home, what do I do? Here, I am helping these people help build a nation."

Conclusion

Iraq 2005

Afghanistan, 2003

Providing medical care to the most deserving patients --- our soldiers at war defending the principles of freedom, self-rule, and equality that define our countries--- is the most personally rewarding experience one can have